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Causal inference from observational data

Goal Estimate the causal effect of  doing action 𝑇 on outcome 𝑌

Example
• 𝑇 : Smoking tobacco for five years
• 𝑌 : Risk of  having lung cancer

𝑇 and 𝑌 can be correlated, but association does not imply causation.
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Causal inference from observational data

Main assumption
We have observed all 
relevant confounders in the 
study population.
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Cancer and Smoking (Fisher, 1958) 
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𝑇
Smoking

𝑌
Lung cancer

Fisher argued there exists a hidden confounder 
between smoking and lung cancer

Genotype
R.A. Fisher smoking a pipe, 
1956. (Source: M. Parascandola)



Confounding is a main reason for 
why association ≠ causation
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This talk

In general, we can not know if  we have observed all confounders.

But if  we have data from multiple environments, we show ways to 
statistically test the presence of  unobserved confounders.

An environment can be e.g. data from different hospitals or time periods.
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Preliminaries
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Causal graphical models

A causal graphical model 𝑀 for variables 𝑿 = (𝑋!, 𝑋", … , 𝑋#) consists of
1. a directed acyclic graph 𝐺 with vertices 𝑿 and 

𝑋$ → 𝑋% iff  𝑋$ is a direct cause to 𝑋%
2. a joint distribution 𝑃𝑿 over the variables

For the given graph, we have the causal factorization

𝑃𝑿 𝑿 =,
$'!

#

𝑃𝑿 𝑋$ 𝑃𝑎 𝑋$
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causal mechanism



Learning causal structure from data
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The structure of  the graph 𝐺 implies certain 
conditional independencies in 𝑃𝑿 1.

Example
We have 𝑋", 𝑋#, 𝑋$ :

1 Assuming 𝐺 and 𝑃𝑿 fulfill the faithfulness and causal Markov properties.

⟺
𝑋!

𝑋"𝑋#

?

?

?
𝑋" ⊥%𝑿 𝑋$



Learning causal structure from data
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Reichenbach’s common cause principle

But often we can not learn the exact structure, even for two variables. 

Let variables 𝑇, 𝑌 be correlated, then either of  the following can be true:

11Hans Reichenbach. The Direction of  Time. Dover Publications, 1956.

𝑈 𝑌𝑇𝑌𝑇𝑌𝑇

i) ii) iii) There exists a latent 𝑈 s.t.



Problem statement 

We observe treatment 𝑇 and outcome 𝑌 in 
different environments 𝐸.

All environments share the same unknown 
causal structure, but 𝑃(𝑇, 𝑌 ∣ 𝐸) may 
change for different enviroments.

Under what conditions can we detect 
the presence of  a hidden confounder 𝑼?
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𝑈
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A first “naïve” approach to check for hidden confounding
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Data from 
environment 1

Data from 
environment 2

Data from 
environment 3

%𝝉𝟏

%𝝉𝟐

%𝝉𝟑

Are the 
estimates 
the same? 



Main assumption: 
independent causal mechanisms
Let 𝑃 ⋅ 𝐸 = 𝑃&( ⋅ )

We have the causal factorization

𝑃$(𝑇, 𝑌, 𝑈) = 𝑃$ 𝑌 𝑃𝑎 𝑌 𝑃$ 𝑇 𝑃𝑎 𝑇 𝑃$ 𝑈 𝑃𝑎 𝑈
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Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of  Causal 
Inference: Foundations and Learning Algorithms. MIT Press, 1st edition, 2017.

𝑈

𝑌𝑇

? ?

𝐸

conditional probabilities (causal mechanisms) 
vary independently across environments



Main assumption: 
independent causal mechanisms
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𝜃' , 𝜃( , 𝜃) : causal mechanisms

Data-generating process
1. An environment is sampled 

from 𝑃 𝜃( , 𝑃 𝜃) and 𝑃(𝜃*)
2. In each environment, sample 

data from 𝑃+!,+",+#(𝑇, 𝑌, 𝑈)
𝑈

𝑌𝑇

? ?

𝜃$ 𝜃%𝜃&

~
𝑃(
𝜃 '
)

~
𝑃(
𝜃 )
)

~
𝑃(
𝜃 (
)𝑲 environments

𝑵 samples



Testable implications of 
hidden confounding
Consider the random sample variables 

𝑇', 𝑌' ~ 𝑃 𝑇', 𝑌' = ∫ 𝑃(#,($,(% 𝑇', 𝑌' 𝑑𝑃 𝜃* 𝑑𝑃(𝜃+) 𝑑𝑃(𝜃,)
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𝑈

𝑌𝑇
? ?

𝜃$ 𝜃%𝜃&

~
𝑃(
𝜃 *
)

~
𝑃(
𝜃 ,
)

~
𝑃(
𝜃 +
)

the distribution of  “sample 𝑖” marginalizing out the environments

Theorem (informal) 
Assuming our data-generating process with independent causal mechanisms, 
we have:

There can not exist a 
confounder 𝑈 between 𝑇 and 𝑌⟺𝑇% ⊥ 𝑌$ ∣ 𝑇$ for 𝑖 ≠ 𝑗



Testing confounding from data

How do we test 𝑻𝒋 ⊥ 𝒀𝒊 ∣ 𝑻𝒊 ?
We sample from 𝑃 𝑇- , 𝑌- by selecting data 
from row 𝑖, and same for 𝑃 𝑇. with a 
different row 𝑗.

Challenges
• The ”sample size” of  the test is the 

number of  environments.
• We need to perform multiple tests for 

different pairs of  𝑖, 𝑗 .

17

Environments

Sa
m
pl
es

1

N

2

⋮
⋮

1 2 K⋯ ⋯

row 𝑖

row 𝑗



Comparison to the naïve approach

Confounding is present Confounding is not present
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Take-aways

• We can detect hidden confounders when we have data from 
multiple environments
• It remains a challenge on how to efficiently test the conditional 

independencies in our theory
• There could be other interesting implications from assuming 

independent causal mechanism
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